Bishellable drawings of Kn

نویسندگان

  • Bernardo M. Ábrego
  • Oswin Aichholzer
  • Silvia Fernández-Merchant
  • Daniel McQuillan
  • Bojan Mohar
  • Petra Mutzel
  • Pedro Ramos
  • R. Bruce Richter
  • Birgit Vogtenhuber
چکیده

The Harary-Hill conjecture, still open after more than 50 years, asserts that the crossing number of the complete graph Kn is H(n) = 1 4 ⌊ n 2 ⌋⌊ n− 1 2 ⌋⌊ n− 2 2 ⌋⌊ n− 3 2 ⌋ . Ábrego et al. [3] introduced the notion of shellability of a drawing D of Kn. They proved that if D is s-shellable for some s ≥ b 2 c, then D has at least H(n) crossings. This is the first combinatorial condition on a drawing that guarantees at least H(n) crossings. In this work, we generalize the concept of s-shellability to bishellability, where the former implies the latter in the sense that every s-shellable drawing is, for any b ≤ s − 2, also b-bishellable. Our main result is that (b 2 c−2)-bishellability also guarantees, with a simpler proof than for s-shellability, that a drawing has at least H(n) crossings. We exhibit a drawing of K11 that has H(11) crossings, is 3-bishellable, and is not s-shellable for any s ≥ 5. This shows that we have properly extended the class of drawings for which the Harary-Hill Conjecture is proved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Crossing Number of Seq-Shellable Drawings of Complete Graphs

The Harary-Hill conjecture states that for every n > 0 the complete graph on n vertices Kn, the minimum number of crossings over all its possible drawings equals H(n) := 1 4 ⌊n 2 ⌋⌊n− 1 2 ⌋⌊n− 2 2 ⌋⌊n− 3 2 ⌋ . So far, the lower bound of the conjecture could only be verified for arbitrary drawings of Kn with n ≤ 12. In recent years, progress has been made in verifying the conjecture for certain ...

متن کامل

Non-Shellable Drawings of Kn with Few Crossings

In the early 60s, Harary and Hill conjectured H(n) := 1 4b2 cbn−1 2 cbn−2 2 cbn−3 2 c to be the minimum number of crossings among all drawings of the complete graph Kn. It has recently been shown that this conjecture holds for so-called shellable drawings of Kn. For n ≥ 11 odd, we construct a non-shellable family of drawings of Kn with exactly H(n) crossings. In particular, every edge in our dr...

متن کامل

More on the crossing number of Kn: Monotone drawings

The Harary-Hill conjecture states that the minimum number of crossings in a drawing of the complete graph Kn is Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . This conjecture was recently proved for 2-page book drawings of Kn. As an extension of this technique, we prove the conjecture for monotone drawings of Kn, that is, drawings where all vertices have different x-coordinates and the edg...

متن کامل

The crossing numbers of $K_{n,n}-nK_2$, $K_{n}\times P_2$, $K_{n}\times P_3$ and $K_n\times C_4$

The crossing number of a graph G is the minimum number of pairwise intersections of edges among all drawings of G. In this paper, we study the crossing number of Kn,n − nK2, Kn × P2, Kn × P3 and Kn × C4.

متن کامل

Toward the rectilinear crossing number of Kn: new drawings, upper bounds, and asymptotics

Scheinerman and Wilf [SW94] assert that “an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph Kn.” A rectilinear drawing of Kn is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.00549  شماره 

صفحات  -

تاریخ انتشار 2015